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The Connected Brain
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R
ecently, there have been several concerted international 
efforts—the BRAIN Initiative, the European Human 
Brain Project, and the Human Connectome Project, to 
name a few—that hope to revolutionize our under

standing of the connected brain. During the past two de 
cades, functional neuroimaging has emerged as the 
predominant technique in systems neuroscience. This is 
foreshadowed by an everincreasing number of publications 
on functional connectivity, causal modeling, connectomics, 
and multivariate analyses of distributed patterns of brain 
responses. In this article, we summarize pedagogically the 
(deep) history of brain mapping. We highlight the theoretical 
advances made in the (dynamic) causal modeling of brain 
function, which may have escaped the wider audience of this 
article, and provide a brief overview of recent developments 
and interesting clinical applications. We hope that this arti

cle engages the signal processing community by showcasing 
the inherently multidisciplinary nature of this important 
topic and the intriguing questions that are being addressed.

Introduction
In this article, we use several key dichotomies to describe 
the evolution and emergence of modeling techniques used 
to characterize brain connectivity. We provide a historical 
overview of the brain connectivity literature, starting with 
the fundamental distinction between functional segregation 
and integration. In so doing, we introduce a key difference 
between functional and effective connectivity and empha
size their relationship via underlying models of distributed 
processing. Next, we consider various causal modeling 
techniques that are used to infer directed brain  connectivity. 
With the help of a unified framework—based on (neuronal) 
statespace models—we show how (with a succession of sim
plifying approximations) standard models of  connectivity 
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can be derived and how various measures of statistical 
dependencies arise from a generative (statespace) model of 
neuronal dynamics. Finally, we focus on the application of 
dynamic causal modeling (DCM) to endogenous neuronal 
activity and simulations of neuronal fluctuations based on 
the connectome. We describe a series of recent (and rapid) 
developments in modeling distributed neuronal fluctuations 
and how this modeling rests on functional connectivity. 
We contextualize these developments in 
terms of some historical distinctions that 
have shaped our approaches to connectiv
ity in functional neuroimaging.

Notation
We use lowercase italics,  ,x  for scalars and 
lowercase bold for vectors, x , and vector 
functions, ,( )x t  where each element repre
sents a timedependent state. Matrices are shown as uppercase 
bold,  .X  In this article, * corresponds to a convolution opera
tor, @  denotes the complex conjugate transpose, $  denotes 
expectation, and + denotes discrete timelagged variables. 
Fourier transforms of variables are in italic uppercase, such 
that ( )FT x( ) Xt ~=^ h . We use F( )$  to denote a variational 
freeenergy functional.

A historical perspective on brain connectivity
The notion of connectivity has a long history in brain imag
ing that can be traced back to the debates around classicism, 
modularity, and connectionism. In the recent past, a common 
notion among neuroscientists was that many functions of the 
brain were predetermined by its structure and that its struc
ture was programmed by our genes. This view emphasized 
functional segregation and localizationism, tracing its his
tory back to the days of phrenology (from Gall in the 18th 
century). Functional localization implies that a function can 
be localized in a cortical area. This is more general than 
functional segregation, which suggests that a cortical area 
is specialized for some aspect of neural processing and that 
this specialization is anatomically segregated within the cor
tex. This is similar to an understanding of how computers 
work, where each part has a preassigned function that can
not be substituted with other parts. However, in past decades, 
this view has changed, with clear evidence that the neural 
pathways in our brain are flexible, adaptable, connected, and 
moldable by changes in our environment or by injury or dis
ease. In short, the brain is quintessentially plastic and can 
adapt and adopt new functionalities through necessity. This 
understanding rests on the notion of connectionism (a term 
first coined by Donald Hebb in the 1940s), with the central 
idea that brain function can be understood as the interaction  
among simple units, for example, neurons connected by syn
apses, that give rise to a connected whole that changes over 
time. Connectionism is closely related to (hierarchical) dis
tributed processing, a perspective that has been substantiated 
by the work of Hubel and Wiesel (recipients of the Nobel 
Prize in Physiology or Medicine 1981) on how  information 

is processed in the visual cortex. They found that the visual 
system comprises simple and complex cells arranged in a 
hierarchical fashion. This finding underwrites the focus on 
neural network implementations based on hierarchical dis
tributed constructs, leading to recent exciting developments 
in machine learning (e.g., hierarchical Bayesian inference [1] 
and deep learning algorithms [2]).

These ideas emerged in functional brain imaging as func
tional segregation and functional integra
tion. Since their inception, there has been 
a sustained trend to move from functional 
segregation (and the study of regionally 
specific brain activation) toward functional 
integration (and the study of its connectiv
ity). Functional localization implies that 
a function can be localized to a cortical 
area, whereas segregation suggests that a 

cortical area is specialized for some aspects of perceptual or 
motor processing and that this specialization is anatomically 
segregated within the cortex. The cortical infrastructure sup
porting a single function may then involve many specialized 
areas whose union is mediated by the functional integration 
among them. In this view, functional segregation is meaning
ful only in the context of functional integration and vice versa. 
There are several descriptions of neuronal processing that 
accommodate the tendency for brain regions to engage in spe
cialized functions (i.e., segregation) and the tendency to coor
dinate multiple functions (i.e., integration) through coupling 
specialized regions. This functional integration is a dynamic 
selfassembling process, with parts of the brain engaging and 
disengaging over time, and has been described by appealing to 
dynamical systems theory, for example, selforganized criti
cality [3], pattern formation, and metastability [4].

This review pursues another key theme—the distinction 
between functional and effective connectivity. This dichot
omy relies on the definition of connectivity (i.e., functional 
integration) per se. The former uses a pragmatic definition 
of connectivity based on (Pearson) correlations and rests on 
statistical dependencies between remote neurophysiological 
events. However, this approach is problematic when dealing 
with distributed neuronal processes in the brain that are medi
ated by slender (axonal) neuronal connections or wires. A more 
mechanistic explanation of observed responses comes from the 
definition of effective connectivity that refers explicitly to the 
influence that one neural system exerts over another. In [5], 
it was proposed that “effective connectivity should be under
stood as the experiment and timedependent, simplest possible 
circuit diagram that would replicate the observed timing rela
tionships between the recorded neurons.” This speaks to two 
important points: effective connectivity is dynamic (activity 
dependent) and depends on a model of directed interactions or 
coupling, which we focus on in this review. Given this, an inter
esting development in functional connectivity now considers 
temporal dynamics, referred to as dynamic functional connec-
tivity [6]. However, these developments fall short of furnish
ing a causal explanation of the sort provided by ( modelbased)  

Several concerted 
international efforts  
hope to revolutionize  
our understanding of  
the connected brain.



16 IEEE SIgnal ProcESSIng MagazInE   |   May 2016   |

effective connectivity. This is because functional  connectivity 
is essentially a description of secondorder data features, 
which precludes a mechanistic explanation of neurophysi
ological time series. Recent applications of DCM to ongoing 
(seizure) activity—in epilepsy—rest explicitly on dynamic 
functional connectivity to estimate the underlying fluctua
tions in effective connectivity or cortical gain control [7], [8]. 
In short, the operational distinction between functional and 
effective connectivity is important because it determines the 
nature of the inferences made about functional integration and 
the sorts of questions that can be addressed with careful con
sideration of the intricate interrelationship between effective 
and functional connectivity [9], [10].

Put simply, functional connectivity is a measure of statisti
cal dependencies, such as correlations, coherence, or transfer 
entropy. Conversely, effective connectivity corresponds to the 
parameter of a model that tries to explain observed depen
dencies (functional connectivity). In this sense, effective 
connectivity corresponds to the intuitive notion of directed 
causal influence. This modelbased aspect is crucial because 
it means that the analysis of effective connectivity can be 
reduced to model comparison, for example, the comparison 
of a model with and without a particular connection to infer 
its contribution to observed functional connectivity. In this 
sense, the analysis of effective connectivity recapitulates the 
scientific process because each model corresponds to an alter
native hypothesis about how observed data were caused. In 
our context, these hypotheses pertain to causal models of dis
tributed brain responses. Later, we consider analytical expres
sions that link effective and functional connectivity and show 

that the latter can be derived from the former, whereas the 
converse is not true.

We have considered the distinction between functional 
segregation and integration in the brain and how the dif
ferences between functional and effective connectivity 
shape the way we characterize connections and the sorts 
of questions that are addressed to empirical data. In the 
next section, we look at the relationship between functional 
and effective connectivity and expand on the causal aspect 
of effective connectivity. Interested readers are directed to 
our previous review [10] for a more detailed discussion on 
brain connectivity.

Causal analyses of dynamical systems
The brain is a dynamic and selforganizing organ with emer
gent dynamics. These dynamics can be seen at multiple 
spatial and temporal scales; for example, there are tens of 
thousands of synaptic connections to a single neuron, which 
can fire dozens of times every second. Furthermore, this 
connectivity itself changes over multiple spatial and temporal 
scales. The spatial scale we are interested in, as measured by 
fMRI, is the macroscopic level, where we are interested in 
distributed processing or connectivity among neural systems 
and where each neural region or source comprises millions 
of neurons. As previously noted, the direction of informa
tion transfer or directed coupling is important. Figure 1 
illustrates the fact that changes in connectivity over time 
underlie the causal relationship among neuronal systems. 
In Figure 1, we show a graph with undirected edges among 
ten nodes, where each node can be regarded as a proxy for a 
neuronal system (in general, these nodes could also be net
work devices in a communication network, e.g., exchang
ing emails). Alternatively, if the links represent a distance 
metric and nodes represent organisms, this could represent a 
model of how infections are disseminated. In this example, 
the graph evolves over time. Although the edges of the graph 
are undirected at each instance, adding a temporal aspect to 
this evolving graph enables one to infer directed information 
flow. (Note: Although we have not used the word informa-
tion here in a strictly informationtheoretic sense, there is a 
straightforward analogy between electrical impulses in neu
ral systems and the classic communications theory picture of 
source, channel, and receiver [11].) For example, if we were 
interested in causal coupling between nodes 1 and 2 (red in 
Figure 1), we see that the activity in node 1 affects the activity 
in node 2, where we assume this influence endures over time. 
As we can see, node 1 is connected to node 2 via intermedi
ate nodes 4, 8, and 5 (shown as blue edges) at time t td- ; 
nodes 9, 10, and 7 at time  t ; and node 3 at time  t td+ . This 
means that node 1 can affect node 2 in the future. However, 
the converse is not true, in that the activity in node 2 cannot 
affect the future of node 1. This asymmetry is a signature 
of causality (i.e., temporal precedence) and rests on account
ing for the arrow of time. This is why, as we see in the next 
section, the statistical models used for characterizing effec
tive connectivity are usually based on  differential equations  
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FIGure 1. This schematic depicts a graph with undirected edges compris-
ing ten nodes, where each node can be considered as a neuronal system. 
We sketched the evolution of this graph over three time points (under the 
assumption that each node retains a memory of past influences). Nodes 
1 and 2 (shown in red) are the nodes in which a causal relationship is of 
interest. The key point of this example is that fluctuations in undirected 
coupling can induce directed dependencies.
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(or difference equations in discrete time) and therefore explic
itly take time into account. This simple example emphasizes 
the importance of temporal fluctuations in connectivity, even 
in undirected graphs. However, we do not want to give the 
impression that temporal precedence is necessary to infer 
causal  relationships. Temporal precedence is an  important 
aspect, and many definitions of causation require cause to 
precede effect [12], [13], for example, directed functional 
connectivity measures based on Yule–Walker formulations 
[vector autoregressive (VAR) models]. However, temporal 
precedence alone cannot distinguish effective connectivity 
from spurious dependencies caused by unknown factors. As 
an example, the barometer falls before the rain, but it does 
not cause the rain. The type of causal
ity that we are concerned with is based 
on control theoretic concepts, where the 
causes (exogenous experimental inputs, 
endogenous random neural fluctuations, or 
both) produce effects (neural activity) that 
are observed empirically through hemody
namics as blood oxygen leveldependent 
(BOLD) signals. This form of causality 
is closely related to the probabilistic and 
graphical framework of causal calculus [14] (see “Simpson–
Yule Paradox”), although there is a clear distinction between 
the two approaches, which we return to later.

We use statespace models to describe the basic concepts 
here and demonstrate that causality based on temporal prece
dence can be regarded as a special case of causality based on 
statespace graphs. In what follows, we look at several mea
sures of causality in functional neuroimaging literature (which 
refer largely to fMRI but also hold for other modalities such as 
EEG, MEG, and local field potentials). These measures can be 
cast in terms of a generalization of statespace models based on 
stochastic differential equations.

State-space modeling of neuronal dynamics
The most natural framework for modeling distributed and cou
pled neural activity is to use statespace models. Statespace 
modeling has its origin in control engineering, but the term 
state-space was first used by Kalman [24] and can be traced 
back to von Bertalanffy, who introduced general systems the
ory to biology in the 1940s and 1950s. We start with a generic 
description of coupled neuronal dynamics in terms of differen
tial equations of the form

 ( ), , ( ) ( )x x u wt t tf i= +o ^ h   (state equation), (1)

 ( ) ( ), ( )y x et t th i= +^ h   (observation equation),  (2)

where ( ) [ ( ),  ( ),…, ( )]x t x t x t x t T
n1 2=  represents a vector of n  

hidden state variables (where each state could correspond to 
a vast number of neurons in a cortical area, source, or spatial 
mode); ( )x to  represents the change in those state variables; i 
are the underlying (connectivity) parameter that are assumed 
to be timeinvariant; ( )y t  is the observed BOLD signal; and 
( )w t  and ( )e t  are state noise (observation or instrument noise, 

respectively), which makes this differential equation ran
dom. (Note: Strictly speaking, the hidden states include both 
neuronal and hemodynamic states; however, for simplicity, 
we ignore hemodynamic states in this article.) The (random) 
endogenous fluctuations ( )w t  on the motion of the hidden 
neuronal states represent the unknown influences (e.g., spon
taneous fluctuations) that can only be modeled probabilisti
cally. (Note: A reviewer of this article rightly pointed out that, 
in this exposition, we limited ourselves to an  additive form 
of endogenous fluctuations that precludes the more general 
treatment of statedependent neuronal fluctuation of the sort 

( ), , ( ) ( ) ,,x u wt t tf i^ h  which are used in modeling many com
plex volatile systems [25], including the brain [26].) The neu

ronal states are hidden because they cannot 
be measured directly. The function f  
defines the motion of the coupled dynami
cal system that is determined by inputs ( )u t ,  
which we consider to be deterministic (but 
could also have stochastic component) and 
known. Inputs usually pertain to experi
mentally controlled variables, such as 
change in stimuli (a visual cue or an audi
tory signal) or instructions during an fMRI 

experiment (we see later that this exogenous input is absent 
in restingstate fMRI). This description of neuronal dynam
ics provides a convenient model of causal interactions among 
neuronal populations because it describes when and where 
exogenous experimental input ( )u t  perturbs the system and 
how (hidden) states influence changes in other states. Note 
that we have assumed that the form of the system dependen
cies f  (and the connectivity parameters i) are timeinvariant, 
which means that we are assuming that the structural proper
ties of the system will remain fixed over time (i.e., during the 
length of data acquisition).

We have not discussed the nature of the state and the 
observation noise process, which we consider in the section  
“Dynamic Casual Modeling of Intrinsic Networks.” For now, 
we assume that they possess usual noise properties, that is, 
they are independent and identically distributed. We describe 
a more general framework for analytic (nonMarkovian) ran
dom fluctuations in the same section. A key simplification in 
this form of modeling is that we have lumped together many 
microscopic neuronal states to form hidden states ( )x t  that 
are abstract representations of neuronal activity (cf. a mean 
field approximation). In reality, the equations of motion—and 
the observer equation—describe very complicated interac
tions among millions of neurons. The formulation above cor
responds to the amplitude of macroscopic variables or order 
parameters summarizing the dynamics of large neuronal pop
ulations. (Note: In statistical physics, the order parameter is a 
variable that indicates which phase you are in; for example, in 
a phase transition between liquid and gas, the order parameter 
may be the density.) Essentially, this means that the individual 
neurons become ordered,  showing a coordinated dynamic pat
tern that can be described with the concept of order param
eters. This sort of formulation can be motivated by basic 

The notion of connectivity 
has a long history in brain 
imaging that can be traced 
back to debates around 
classicism, modularity, 
and connectionism.



18 IEEE SIgnal ProcESSIng MagazInE   |   May 2016   |

The Simpson–Yule paradox, or simply Simpson’s paradox 
[15]–[17], refers to the disconcerting situation in which sta-
tistical relationships between variables (e.g., x and y) are 
reversed or negated by the inclusion of an additional vari-
able (z); for a more recent discussion, see [18]–[20]. A 
famous example of this paradox is when the University of 
California, Berkeley, came under investigation in 1975 for 
gender bias in graduate admissions. The graduate admis-
sions statistics revealed that men applying were more likely 
to be admitted than women. However, when data were 
analyzed for each department separately, the reverse was 
true: no department was statistically significant in favor of 
men. The resolution of this paradox turned out to be that 
women applied for more competitive departments—with 
low success rates—in relation to men, who applied for 
fewer competitive majors with greater chances of accep-
tance. The main point is that conclusions based on data 
are sensitive to the variables we choose to hold constant, 
and that is why the “adjustment problem” is so critical in 

the analysis of observational studies. Even now, no formal 
procedure has emerged that tells us whether adjusting for 
variable z is appropriate for the given study, setting aside 
intractable criteria [21] based on counterfactuals [22]. 
However, Simpson’s paradox is easily resolved with causal 
graphs. A simple graphical procedure provides a general 
solution to the adjustment problem [23]. This procedure is 
shown in Figure S1 and summarized as follows:

Objective
Check if z1  and z2  are sufficient measurements.
1) z1  and z2  should not be descendants of x.
2) Delete all nonancestors of { , ,x y z }.
3) Delete all edges from x.
4) Connect any two parents sharing a child.
5) Strip arrowheads from all edges.
6) Delete z1  and z2 . Check if x  is disconnected from y  in 

the remaining graph; then z1  and z2  are appropriate 
measurements.

z1

z1 z1 z1

z1 z1

z2

z2
z2 z2

z2 z2

y

y y yy

y yx

x

x

x

x

Step 1

Step 4 Step 5 Step 6

Step 2 Step 3

Simpson–Yule Paradox

FIGure S1. A simple graphical procedure provides a general solution to the adjustment problem. (Figure reproduced and redrawn with permission 
from [23].) 
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principles [27], for example, the center manifold theorem [28] 
and the slaving principle [29], [30], that apply generally to 
coupled dynamical systems.

State-space modeling and effective connectivity
The state and observation equations in (1) and (2) are generic 
representations; hence, there are several forms that the map
pings or functions f  and h  can take. In turn, these define the 
sort of inference that can be made and the nature of causal 
relationships that can be identified from these models. We see 
in this section that almost all models in neuroimaging can be 
viewed as special cases of these equations.

Dynamic causal modeling
Although the application of general statespace models in 
neuroimaging has been around for decades, the explicit use 
of statespace models based on differential equations can be 
traced to [31], with the first introduction of a nonlinear neu
ral mass model for EEG data. However, the most widely used 
and comprehensive framework, which uses Bayesian statistics 
to make model and parameter inferences, is DCM [32]. When 
first introduced, DCM used an ordinary differential equation 
(ODE) but was later extended to statespace models based on 
stochastic and random differential equations [33], [34]. The 
most widely used DCM is based on a Taylor expansion of (1) to 
its bilinear approximations:

 ( ) ( ) ( ) ( ),x A B u x Cu wt t t t
j
J j

j0
= + + +

=
o ` j/  (3)

where ,/  /A xB uxf f22 2 22 2= = , and /C uf2 2=  with 
, ,A B Cni = " ,. The matrix A is known as the Jacobian (or 

Laplace–Beltrami operator) describing the behavior—that is, 
the effective connectivity—of the system near its fixed point 
( ( )xf 0o = ), in the absence of the fluctuations ( )w t  and the 
modulatory inputs  ( )u t . The matrices  B j  encode the change 
in effective connectivity induced by the jth input ( )u tj , and C 
embodies the strength of the direct influences of inputs ( )u t  on 
neural activity. In fMRI, the mapping from hidden states to the 
observed BOLD data ( )y t  is based on a hemodynamic model 
that transforms hidden neuronal states of each population or 
region into predicted BOLD responses using a previously 
established biophysical model [32], [35], [36]. This hemody
namic model is based on four ODEs and five hemodynamic 
parameters ,hi  such that { , }n hi i i= . The hemodynamic 
model describes how neuronal activity engenders vasodila
tory signals that lead to increases in blood flow, which in turn 
changes the blood volume and deoxyhemoglobin content, 
which subtend the measured signal.

The bilinear approximation to our general statespace 
model of neurophysiological dynamics furnishes a probabi
listic model that specifies the probability of observing any 
time series given the parameters. This is known as a likeli-
hood model and usually assumes that the observed data are a 
linear mixture of the model predictions and Gaussian obser
vation noise. By combining this likelihood model with prior 
beliefs (specified in terms of probability distributions), we have 

what is called, in Bayesian statistics, a generative model. This 
allows one to use standard (variational) procedures to estimate 
the posterior beliefs about the parameters and, crucially, the 
model itself. The real power of DCM lies in the ability to com
pare different models of the same data. This comparison rests 
on the model evidence, which is simply the probability of the 
observed data under the model in question (and given known 
or designed exogenous inputs). The evidence is also called 
the marginal likelihood because one  marginalizes or removes 
dependencies on the unknown quantities (hidden states and 
parameters). The model evidence can simply be written as

 ( | , ) ( , , | , ) .y u y x u xp m p m d di i= #  (4)

Model comparison rests on the evidence for one model relative 
to another (see [51] for a discussion in the context of fMRI).  
Model comparison based on the likelihood of different models 
provides the quantitative basis for all evidencebased hypoth
esis testing. Usually one selects the best model using Bayesian 
model comparison, in which different models are specified in 
terms of priors on the coupling parameters. These are used to 
switch off parameters by assuming a priori that they are zero 
(to create a new model). In DCM, priors used are socalled 
“shrinkage priors” because the posterior estimates shrink 
toward the prior mean. The size of the prior variance deter
mines the amount of shrinkage. With a null model m0  and an 
alternative model m1, the Bayesian model comparison rests on 
computing the logarithm of the evidence ratio

 |
|

|  |

F , F , ,

( ) ( )
y
y

y y

y y

ln ln ln
p m
p m

p m p m
0

1
1 0

1 0. n n

= -

-

c ^^
^ ^

h
h m

h h
 

(5)

where F(.) is the free energy that provides an (upper bound) 
approximation to Bayesian model evidence. Note that we have 
expressed the logarithm of the marginal likelihood ratio as a 
difference in log evidences. This is the preferred form because 
model comparison is not limited to two models but can cover a 
large number of models whose quality can be usefully quanti
fied in terms of their log evidences. A relative log evidence of 
three corresponds to a marginal likelihood ratio (Bayes fac
tor) of about 20 to one, which is considered strong evidence in 
favor of one model over another [37]. An important aspect of 
model evidence is that it includes a complexity cost (which is 
sensitive not only to the number of parameters but also to their 
interdependence). This means that a model with redundant 
parameters would have less evidence, even though it provided 
a better fit to the data (see [51]). In most current implementa
tions of DCM, the log evidence is approximated with a (varia
tional) freeenergy bound that (by construction) is always less 
than the log evidence. As we see in (5), this bound is a function 
of the data and (under Gaussian assumptions about the poste
rior density) some proposed values for the states and param
eters. When the free energy is maximized (using gradient 
ascent) with respect to the proposed values, they become the 
 maximum posterior or  conditional estimates, n , and the free 
energy, F , |y ylnp m1 #n^ ^h h, approaches the log evidence. 
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We return to Bayesian model comparison and the inversion 
of DCMs in the section “Biophysical Modeling of Neuronal 
Dynamics.” Next, we consider some alternative models. The 
first is a discrete time linear approximation to (1), which is the 
basis of Granger causality.

Vector autoregressive modeling
In contrast to DCM, in which causality is based on control 
theoretic constructs, (multivariate) autoregressive models 
[38]–[40] use temporal precedence for inferring causality in 
BOLD time series [41]. This is known as directed functional 
connectivity in neuroscience. It is straightforward to see that 
one can convert a statespace model—or DCM—into a VAR 
model with a few simplifying assumptions. Using a linear 
approximation to the statespace model of (1) and assum
ing that we can measure the neuronal states directly [i.e., 
( ) ( )y xt t= ], then we can write

 ( ) ,( ) ( )y Ax zt t td= - +u   (6)

which can be written as

 ,Y YA ZT= +u u  

where ( )A Aexp d=u  and 0( ) exp( ) ( )z At w t d8 x x x= -d . The 
second equality expresses the resulting VAR model as a simple 
general linear model with explanatory variables Yu  that corre
spond to a timelagged (time × source) matrix of states. Here, the 
unknown parameters comprise the autoregression matrix Au .  
Note that the innovations, ( )z t , are now a mixture of past fluc
tuations in ( )w t  that are remembered by the system. There is a 
clear distinction between fluctuations ( )w t  that drive the hid
den states (1) compared with the innovations ( )z t  in (6) that 
underlie autoregressive dependencies among observation ( )y t .  
There is an important point to note here. Because the repa
rameterization of the effective connectivity in (3) uses a 
matrix exponential, the autoregressive coefficients  Au  in (6) 
are no longer the parameters of the underlying effective con
nectivity among neuronal states. This means that any model 
comparisons—based on classical likelihood ratio tests such 
as Bayesian information criterion—will be making infer
ences about the statistical dependencies modeled by the 
autoregressive process and not about the causal coupling as 
in DCM. This is why connectivity measures based on autore
gressive coefficients, for example, Granger causality [42], 
are regarded as directed functional connectivity as opposed 
to effective connectivity. A further distinction is that most 
Granger causality applications either ignore hemodynamic 
convolution or assume that hemodynamics are identical and 
noiseless [147]. An important aspect of Granger causality 
measures based on autoregressive formulations (we provide 
analytic links between the two in Figure S2) is that they can 
become unreliable in the presence of measurement noise 
and more so when underlying dynamics are dominated by 
slow (unstable) modes, quantified by the principal Lyapunov 
exponent [43]. However, there are several recent advances 
in the Granger causality literature that speak to these limita
tions [44]–[46].

Structural equation modeling
Structural equation modeling (SEM) [47] is another generic 
approach developed primarily in economics and social scienc
es [48], [49] and was used in (structural) neuroimaging for the 
first time in [50]. We can again see that SEM is a special case 
of (1) by appealing to the (adiabatic) assumption that neuronal 
dynamics have reached equilibrium at each point of observa
tion—or, in other words, the dynamics are assumed to occur 
over a timescale that is short relative to the fMRI sampling 
interval. In terms of implementation, we can force this condi
tion by having very strong shrinkage priors in DCM. With this 
assumption, we can reduce the generative model of (3) so that 
it predicts the observed covariance among regional responses 
over time instead of predicting the time series itself. Math
ematically, this means that we assume ( ) ( )y xt t= , ( )u t 0= ,  
and ( )x t 0=o . This simply means that ( ) ( ) ( )x y A wt t t1= =- - ,  
which implies that

 / / ( ) ,A Ay T1 1= - -
w  (7)

where / ( ) ( )y yt ty T=  and / ( ) ( )w wt t T=w . Note that 
we do not have to estimate hidden states because the genera
tive model explains observed covariances in terms of random 
fluctuations and unknown coupling parameters. The form of 
(7) has been derived from the generic generative model. In this 
form, it can be regarded as a Gaussian process model, where 
the coupling parameters become, effectively, parameters of the 
covariance among observed signals due to the hidden states. We 
can also give an alternative formulation of SEM in terms of path 
coefficients, but we skip this for brevity (for details, see [51]).

Although SEM has been used in fMRI literature, it provides 
a description of static dependencies; hence, it is not suitable 
for fMRI (and EEG/MEG) time series, in which the charac
teristic time constants of the neuronal dynamics and hemody
namics are much larger than the exogenous inputs that drive 
them. This means that testing for contextsensitive changes in 
effective connectivity becomes problematic in eventrelated 
designs. For example, [52] used simulated fMRI time series 
from a realistic network model for two task conditions in 
which the anatomical connectivity was known and could be 
manipulated. The results suggested that caution is necessary in 
applying SEM to fMRI data and illustrate that functional inter
actions among distal network elements can appear abnormal 
even if only part of a network is damaged.

Another issue when using SEM to infer effective connectiv
ity is that we can only use models of low complexity—usually, 
(acyclic) models that have no recurrent connections [53]. This 
is because fitting the sample covariance means that we have to 
throw away lots of information in the original time series. Heu
ristically, the ensuing loss of degrees of freedom means that 
conditional dependencies among the estimates of effective con
nectivity are less easy to resolve. In machinelearning literature, 
SEM can be regarded as a generalization of inference on linear 
Gaussian Bayesian networks that relaxes the acyclic constraint. 
As such, it is a generalization of structural causal modeling, 
which deals with directed acyclic graphics (DAGs) (see next 
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section). This generalization is important in the neurosciences 
because of the ubiquitous reciprocal connectivity in the brain that 
renders it cyclic or recursive. Next, we turn to the description of 
time series based on secondorder statistics and show that they 
can be analytically derived from the statespace model of (1).

Coherence, cross spectra, and correlations
Until now, we have considered only procedures for identifying 
effective connectivity from fMRI time series. However, the fol
lowing important question remains: Is there an analytical rela
tionship between functional and effective connectivity? This 
question is addressed schematically in “Measures of Connec
tivity” by showing how various measures of statistical depen
dencies (functional connectivity) are interrelated and how they 
can be generated from a DCM. This sche
matic  contextualizes  different measures of 
functional connectivity and how they arise 
from (statespace) models of effective con
nectivity. In other words, measures that are 
 typically used to characterize observed data 
can be regarded as samples from a probabili
ty distribution over functions whose expecta
tion is known. This means that one can treat 
normalized measures, such as crosscorrela
tion functions and spectral Granger causality, as explicit func
tions of the parameters of the underlying generative process.

In “Measures of Connectivity,” we include common  
(descriptive) measures of functional connectivity that have been 
used in fMRI, such as the correlation coefficient (the value of the 
crosscorrelation function at zero lag), coherence, and (Geweke) 
Granger causality [54]. These measures can be regarded as stan
dardized (secondorder) statistics based on the crosscovariance 
function, the crossspectral density, and the directed transfer 
functions, respectively. In turn, they are determined by the first
order (Volterra) kernels, their associated transfer functions, and 
VAR coefficients. For readers not familiar with Volterra kernels, 
their use provides an alternative to the conventional identifica
tion methods by expressing the output signal as highorder non
linear convolution of the inputs. This can simply be thought of 
as a functional Taylor expansion and can be regarded as a power 
series with memory (see [55] for a detailed discussion). All 
of these representations can be generated from the underlying 
statespace model used by DCM. Let us examine these relation
ships further. First, there is a distinction between the statespace 
model (upper two panels of Figure S2), which refers to hidden 
or system states, and representations of dependencies among 
observations (lower panels), which do not. This is important 
because, although one can generate the dependencies among 
observations from the statespace model, one cannot do the 
converse. In other words, it is not possible to derive the param
eters of the statespace model (e.g., effective connectivity) from 
transfer functions or autoregression coefficients. This is why 
one needs a statespace model to estimate effective connectivity 
or, equivalently, why effective connectivity is necessarily mod
elbased. Second, we have seen in previous sections that SEM 
and autoregressive representations can be derived from (bilinear 

and stochastic) DCM in a straightforward manner (under certain 
assumptions). The convolution kernel representation in Figure 
S2 provides a crucial link between covariancebased second
order measures, such as cross covariance and cross correlation, 
and their spectral equivalents, such as cross spectra and coher
ence. Figure S2 also highlights the distinction between second
order statistics (lower two rows) and models of the variables per 
se (upper three rows). For example, convolution and autoregres
sive representations can be used to generate time series (or their 
spectral counterparts), whereas crosscovariance functions and 
autoregression coefficients describe their secondorder behav
ior. This is important because this secondorder behavior can be 
evaluated directly from observed time series. Indeed, this is the 
common way of measuring functional connectivity in terms of 

(secondorder) statistical dependencies. We 
also highlight the dichotomy between time 
and frequency representations (measures 
in the top panel). For example, the (first
order Volterra) kernels in the convolution 
formulation are the Fourier transform of the 
transfer functions in frequency space (and 
vice versa). Similarly, the directed transfer 
functions of the  autoregressive  formulation 
are based on the Fourier transforms of the 

autoregression coefficients. Another distinction is between rep
resentations that refer explicitly to random (state and observa
tion) noise and autoregressive representations that do not. For 
example, notice that the crosscovariance functions of the data 
depend on the crosscovariance functions of state and obser
vation noise. Conversely, the autoregression formulation only 
invokes (unit normal) innovations (although the autoregression 
coefficients are an implicit function of both state and observa
tion noise covariance functions). In the current setting, autore
gressive representations are not regarded as models but simply 
as ways of representing dependencies among observations. This 
is because (hemodynamic) responses do not cause responses—
hidden (neuronal) states cause responses.

Crucially, all of the aforementioned formulations of sta
tistical dependencies contain information about temporal 
lags (in time) or phase delays (in frequency). This means 
that, in principle, all measures are directed in the sense that 
the dependencies from one region to another are distinct 
from the dependencies in the other direction. However, only 
the autoregressive formulation provides directed measures 
of dependency—in terms of directed transfer functions or 
Granger causality. This is because the crosscovariance and 
crossspectral density functions between two time series are 
antisymmetric. The autoregressive formulation can break this 
(anti)symmetry because it precludes instantaneous dependen
cies by conditioning the current response on past responses. 
Note that Granger causality is, in this setting, a measure of 
directed functional connectivity [56]. This means that Grang
er causality (or the underlying autoregression coefficients) 
reflects directed statistical dependencies such that two regions 
can have strong autoregression coefficients or Granger cau
sality in the absence of a direct effective connection. Finally, 

Key modeling 
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The upper panel in Figure S2 illustrates the form of a state-
space model that comprises differential equations coupling 
hidden states (first equation) and an observer equation 
mapping hidden states ( )x t  to observed responses ( )y t  (sec-
ond equation). Dynamic causal models are summarized by 
a Taylor (bilinear) approximation. Crucially, both the motion 
of hidden states and the responses are subject to random 
fluctuations, also known as state ( )w t  and observation ( )e t  
noise. The form of these fluctuations is modeled in terms of 
their cross-covariance functions / ( )t  of time t or cross-spec-
tral density functions ( )g t  of (radial) frequency ~, as shown 
in the lower equations. Given this state-space model and its 
parameters i (which include effective connectivity), one can 
now parameterize a series of representations of statistical 
dependencies among successive responses as shown in the 
third row. These include convolution and autoregressive for-
mulations shown on the left and right, respectively, in either 
time (pink and orange) or frequency (light green) space. 
The mapping between these representations rests on the 
Fourier transform, denoted by a dotted line, and its inverse. 
For example, given the equations of motion and observer 
function of the state-space model, one can compute the con-
volution kernels that, when applied to state noise, produce 

the response variables. This allows one to express observed 
responses in terms of a convolution of hidden fluctuations 
and observation noise. The Fourier transform of these con-
volution kernels ( )tl  is called a transfer function ( )K t . Note 
that the transfer function in the convolution formulation 
maps from fluctuations in hidden states to response vari-
ables, whereas the directed transfer function in the autore-
gressive formulation ( )S t  maps directly among different 
response variables. These representations can be used to 
generate second-order statistics or measures that summarize 
the dependencies, as shown in the third row, for example, 
cross-covariance functions and cross spectra. The normal-
ized or standardized variants of these measures are shown 
in the lower row and include the cross-correlation function 
(in time) or coherence (in frequency). The equations show 
how various representations can be derived from each 
other. All variables are either vector or matrix functions of 
time or frequency. For simplicity, the autoregressive formula-
tions are shown in discrete form for the univariate case (the 
same algebra applies to the multivariate case, but the nota-
tion becomes more complicated). Here, ( )z t  is a unit nor-
mal innovation. Finally, note the Granger causality is only 
appropriate for a bivariate time series.

Measures of Connectivity

(Inverse) Fourier Transform

Transformation Under Assumptions

=

=

0
0

0
y (t  – 1)
y (t  – 2) y (t  – 1)

...

...
. . .

. . .

. . . . . .

0
0

0
a1

a1a2

Y
~

A
~

State-Space Model

y(t ) = h (x(t ), θ) + e(t )
x(t ) = f (x(t ), θ) + w(t )
.

Σw(t ) = 〈w(t )w(t  – )T 〈 Σe(t ) = 〈e(t )e(t  – )T 〈and
.

E.g., Bilinear DCM: x(t ) = (A + ∑j uj B
j)x + Cu + w(t )

SEM
(Assuming x(t ) = y (t ) and y(t ) = 0 u(t ) = 0)

.

y(t ) = Ay(t ) + w(t ) = (Θ – I)y(t ) + e(t )
.

y(t ) = Θy(t ) + e(t )

Convolution Kernel

κ( ) = xh . exp ( xf)
y(t ) = κ( ) ∗ w(t ) + e(t )

cij ( ) =
Σjk ( )

Σjj (0) Σkk (0)√

Cross Correlation

Σ( ) = 〈y(t ) . y(t  – )T

= κ(t ) ∗ Σw(t ) ∗ κ(–t ) + Σe(t ) 

Cross Covariance

Spectral Representations

Convolution Theorem

Y ( ) = K ( )W ( ) + E ( )
K ( ) = FT(κ( ))

Cross-Spectral Density

gy( ) = 〈Y ( )Y ( )† 〈

= K( ) . gw( ) . K( )† + ge( )

Coherence

Cij ( ) =
|gjk( )|2

gjj ( )gkk( )

Y ( ) = A ( ) . Y ( ) + Z ( )
A ( ) = FT(a1, a2 aN)

Convolution Theorem

Y ( ) = S ( ) . Z ( )

S ( ) = (I – A( ))–1

Directed Transfer Functions
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|Sjk( )|2

g ( )
Gjk ( ) = –In 1 –

VAR Model
(Assuming x(t ) = y(t ))

y(t ) = ∑
N

i = 1

aiy(t  – i ) + z(t )

Autoregression Coefficients
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~ ~ ~ ~ ~
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〉

FIGure S2. The relationship among different formulations of dependencies within a multivariate time series used in fMRI. 
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there is a distinction between (secondorder) effects sizes in 
the upper row of dependency measures and their standardized 
equivalents in the lower row (Figure S2). For example, coher
ence is simply the amplitude of the crossspectral density 
normalized by the autospectra of the two regions in question. 
Similarly, one can think of Granger causality as a standard
ized measure of the directed transfer function (normalized by 
the autospectra of the source region).

We also note another widely used mea
sure of functional dependencies known as 
mutual information [57], which quantifies 
the shared information between two vari
ables and can reflect both linear and nonlin
ear dependencies. For example, if two time 
series are independent, there is no shared 
information, and hence the mutual infor
mation is zero. Mutual information can be 
calculated relatively simply—under the assumption that time 
series are Gaussian—from coherence in the frequency domain 
as [58]–[60]

 ,( )log C d
2
1 1ij ij

1

2
j

r
~ ~= -

~

~ ^ h#  (8)

where ( )Cij ~  is the coherence (as defined in Figure S2) 
between the two time series i and j.

In summary, given a statespace model, one can predict or 
generate the functional connectivity that one would observe 
in terms of crosscovariance functions, complex cross spec
tra, or autoregression coefficients (where the latter can be 
derived in a straightforward way from the former using the 
Yule–Walker formulation). In principle, this means that one 
could use either the sampled crosscovariance functions or 
cross spectra as data features. It would also be possible to use 
the leastsquares estimate of the autoregression coefficients—
or, indeed, Granger causality—as data features to estimate the 
underlying effective connectivity. We describe such schemes 
in the next section.

Summary
In this section, we have tried to place different analyses 
of connectivity in relation to each other. The most preva
lent approaches to effective connectivity are DCM, SEM, 
and Granger causality. We highlighted some of the implicit 
assumptions made when applying SEM and Granger causality 
to fMRI time series. Next we will focus on generative models 
of distributed brain responses and consider some of the excit
ing developments in this field.

Biophysical modeling of neuronal dynamics
Biophysical models of neuronal dynamics are usually used for 
one of two things: either to understand the emergent proper
ties of neuronal systems or as observation models for measured 
neuronal responses. We discuss examples of both. In terms of 
emergent behaviors, we consider dynamics on structure [61]–
[69] and how this behavior has been applied to characterizing 
autonomous or endogenous fluctuations in fMRI [70]–[73]. 

This section concludes with recent advances in DCM of direct
ed neuronal interactions that support endogenous fluctuations. 
Some sections below are based on our previous review [10].

Intrinsic dynamics, criticality, and bifurcations
The use of restingstate fMRI [74], [75] or studies based on 
BOLD signal correlations while the brain is at rest are wide

spread [76]. These patterns are thought to 
reflect anatomical connectivity [77] and 
can be characterized in terms of remarkably 
reproducible spatial modes (restingstate or 
intrinsic networks). One of these modes 
recapitulates the pattern of deactivations 
observed across a range of activation studies 
(the default mode [78]). Restingstate fMRI 
studies show that even at rest, endogenous 
brain activity is selforganizing and highly 

structured. The emerging picture is that endogenous fluctua
tions are a consequence of dynamics on anatomical connec
tivity structures with particular scaleinvariant characteristics 
[70], [71], [79], [80]. These are wellstudied and universal 
characteristics of complex systems and suggest that we may be 
able to understand the brain in terms of universal phenomena 
[81]. Universality is central to the hypothesis that the cerebral 
cortex is poised near a critical point where only one variable, a 
control parameter, determines the macroscopic behavior of the 
system [82], [83]. This is an important issue because systems 
near phase transitions show universal phenomena [84]–[88]. 
Near the critical point, correlations between neurons would 
occur across all scales, leading to optimized communication 
[89]. Experimental evidence for this notion has accumulated 
during the past decades, and power laws and scaling relation
ships have been found in human neuroimaging time series 
[90], [91]. However, it should be noted that with more atten
tion on this new direction, there are a variety of distributions 
(e.g., stretched exponential, Rayleigh, double exponential, and 
lognormal) that are found in neurophysiological time series 
[26], [92], [93]. Hence, there may be a need to carefully dis
ambiguate the causes of these heavytailed distributions found 
in the brain and behavior. From the dynamical system per
spective, endogenous dynamics are thought to be generated 
by the dynamic instabilities that occur near bifurcations, that 
is, dynamics that accompany a loss of stability when certain 
control parameter(s) reach a critical value [26], [94]–[96]. The 
eigenmodes of neuronal (effective) connectivity that define 
the stability of the resting state give rise to scalefree fluc
tuations that emerge from the superposition of the few modes 
that decay slowly. These slowly fluctuating (unstable) modes 
have Lyapunov exponents that are close to zero. This occurs 
when systems approach transcritical bifurcations (or stochas
tic Hopf bifurcations when the eigenvalues are complex [97], 
[98] and show critical slowing [93]). Put simply, this means 
that the ensuing networks are defined by trajectories that have 
fixed points close to instability and that the neuronal fluctua
tions persist over longer timescales to generate the patterns 
responsible for the emergence of intrinsic brain networks. The 
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amplitudes of these eigenmodes or patterns correspond to the 
order parameters described in the “StateSpace Modeling and 
Effective Connectivity” section. The (negative) inverse of the 
Lyapunov exponent corresponds to the characteristic time con
stant of each mode, where each mode with a small exponent 
(large time constant) corresponds to an intrinsic brain network 
or restingstate network.

Causal modeling of neuronal dynamics
The past decade has seen the introduction of graph theory to 
brain imaging. Graph theory provides an important formula
tion for understanding dynamics on structure. Developments 
in this area have progressed on two fronts: 
understanding connections between graphs 
and probability calculus and the use of 
probabilistic graphs to resolve causal inter
actions. The probabilistic graph frame
work goes beyond classical constructs by 
providing powerful symbolic machinery 
and notational convenience (e.g., the use 
of dependency graphs to resolve Simpson’s 
paradox; see “Simpson–Yule Paradox”). 
Within this enterprise, one can differentiate at least two 
streams of work: one based on Bayesian dependency graphs or 
graphical models called structural causal modeling [99] and 
the other based on causal influences over time, which we con
sider under DCM. Structural causal modeling originated with 
SEM [47] and uses graphical models (Bayesian dependency 
graphs or Bayes nets) in which direct causal links are encoded 
by directed edges. These tools have been largely developed by 
Pearl [22] and are closely related to the ideas in [100]–[102]. 
An essential part of network discovery in structural causal 
modeling is the concept of intervention: eliminating connec
tions in the graph and  setting certain nodes to given values. 
Structural causal modeling lends a powerful and easytouse 
graphical method to show that a particular model specifica
tion identifies a causal effect of interest. Moreover, the results 
derived from structural causal modeling do not require spe
cific distributional or functional assumptions, such as multi
variate normality, linear relationships, and so on. However, 
it is not the most suitable framework to understand coupled 
dynamical systems because it is limited in certain respects. 
Crucially, it deals only with conditional independencies in 
DAGs. This is problematic because brains perform computa
tions on a directed and cyclic graph. Every brain region is 
connected reciprocally (at least polysynaptically), and every 
computational theory of brain function rests on some form of 
reciprocal or reentrant message passing. Another drawback is 
that the causal calculus of structural causal modeling ignores 
time. Pearl argued that a causal model should rest on function
al relationships between variables. However, these functional 
relationships cannot deal with (cyclic) feedback loops. Pearl 
[14] argued for DCMs when attempting to identify hysteresis 
effects, where causal influences depend on the history of the 
system. Interestingly, the DAG restriction can be finessed 
by considering dynamics and temporal precedence within 

structural causal modeling. This is because the arrow of time 
can be used to convert a directed cyclic graph into an acy
clic graph when the nodes are deployed over successive time 
points. This leads to SEM with timelagged data and related 
autoregression models, such as those employed by Granger 
causality described previously. As established in the previous 
section, these can be regarded as discrete time formulations of 
DCMs in continuous time.

Structural and dynamic causal modeling
As already established, in relation to the modeling of fMRI 
time series, DCM refers to the (Bayesian) inversion and com

parison of models that cause observed data. 
These models are usually statespace mod
els expressed as (ordinary, stochastic, or 
random) differential equations that govern 
the motion of hidden neurophysiological 
states. These models are generally equipped 
with an observer function that maps from 
hidden states to observed signals [see (1)]. 
The basic idea behind DCM is to formulate 
one or more models of how data are caused 

in terms of a network of distributed sources. These sources talk 
to each other through parameterized connections and influ
ence the dynamics of hidden states that are intrinsic to each 
source. Model inversion provides estimates of their parameters 
and the model evidence.

We have introduced DCM for fMRI using a simple state
space model based on a bilinear approximation (extensions 
to, for example, nonlinear [103] and twostate [104] DCM, 
among others, are also available and are in use) to the underly
ing equations of motion that couple neuronal states in differ
ent brain regions [32]. Most DCMs consider point sources for 
both fMRI and EEG/MEG data (cf. equivalent current dipoles) 
and are formally equivalent to the graphical models used in 
structural causal modeling. However, in DCM, they are used 
as explicit generative models of observed responses. Inference 
on the coupling within and between nodes (brain regions) is 
generally based on perturbing the system and trying to explain 
the observed responses by inverting the model. This inversion 
furnishes posterior or conditional probability distributions 
over unknown parameters (e.g., effective connectivity) and the 
model evidence for model comparison [105]. The power of the 
Bayesian model comparison in the context of DCM has become 
increasingly evident. This now represents one of the most 
important applications of DCM and allows different hypoth
eses to be tested, where each DCM corresponds to a specific 
hypothesis about functional brain architectures [106]–[112]. 
DCM has been used mostly for (taskbased) fMRI and electro
physiological dynamics (EEG/MEG/LFPs), but the most recent 
advances have focused on the modeling of intrinsic brain net
works in the absence of exogenous influence, known as resting
state fMRI [74]. In the remainder of this section, we briefly 
review these developments and discuss these new mathematical 
models. We also showcase some of their clinical applications to 
neurodegenerative diseases, such as Parkinson’s disease.
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Dynamic casual modeling of intrinsic networks
There has been an explosion of research examining sponta
neous fluctuations in fMRI signals (Figure 2). These fluc
tuations can be attributed to spontaneous neuronal activity, 
which is usually ignored in deterministic models of responses 
to (designed) experimental inputs. Deterministic DCMs are 
cast as multipleinput, multipleoutput systems, in which exog
enous inputs perturb the brain to produce an observed BOLD 
response. In the absence of external inputs, as in the case of 
restingstate fMRI, neuronal networks are driven by activ
ity that is internal to the system [113]. The generative model 
for restingstate fMRI time series has the same form as (3) 
but discounts exogenous modulatory input. It should be noted 
that we can still include exogenous (or experimental) inputs, 
( )u t , in our model. These inputs drive the hidden states and 

are  usually set to zero in restingstate models. It is perfectly 
 possible to have external (nonmodulatory) stimuli, as in the 
case of conventional functional neuroimaging studies. For 
example, in [114] we used an attentiontovisualmotion par
adigm to illustrate this point. Figure 3 provides a schematic 
of the resulting stochastic DCM. In contrast to the previous 
section, we adopt a generalized framework in which state 
noise ( )w t  and observation noise ( )e t  are analytic (i.e., non 
Markovian). This simply means that generalized motion of 
the state noise ( ) ( ), ( ), ( )w w w wt t t t f= o p6 @ is well defined in 
terms of its higherorder statistics. Similarly, the observation 
noise ( ) ( ), ( ), ( )e e e et t t t f=u po6 @ has a welldefined covariance 
(for a more detailed discussion, see [115]). Consequently, the 
stochastic part of the generative model in (1) can be conve
niently parameterized in terms of its precision (inverse cova
riance). This allows us to cast (1) as a random differential 
equation instead of a stochastic differential equation, hence 
eschewing Itô calculus [34], [116]. Interested readers will find 
a theoretical motivation for using analytic state noise in [34]. 
Under linearity assumptions, (1) can be written compactly in 
generalized coordinates of motion as
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^
^ h
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(9)

where D is the block diagonal temporal derivative operator, 
such that the vectors of generalized coordinates of motion 
are shifted as we move from lower orders of motion to higher 
orders [115]. For restingstate activity, (9) takes a very simple 
linear form:

 ( ) ( ) ( ) ( ) .Dx Ax Cu vt t t t= + +u u u u   (10)

This is an instance of a linear dynamical system with qua
sideterministic behavior [117], [118]. Put simply, the linear 
dynamical system described by (10) is insensitive to the initial 
conditions. For this reason, it can exhibit only a limited rep
ertoire of behavior: linear systems can contain closed orbits, 
but they will not be isolated; no limit cycles—either stable 
or unstable—can exist, which precludes chaotic behavior. 
Technically speaking, if m  represents the eigenvalues of the 
Jacobian  Afx2 =u , that is, Am o o= @ , where  @  denotes the 
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FIGure 2. Citation rates for resting-state fMRI studies. These citations 
were identified by searching for “fMRI*” and “resting state.” (Source: 
Web of Science.) 
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FIGure 3. This schematic illustrates the forward (dynamic causal) model 
for modeling intrinsic or endogenous fluctuations. The endogenous fluc-
tuations (state noise) are the driving input to the state-space model of ef-
fective connectivity, which is a function of the current neuronal states ( )x t  
and the connectivity parameters i that define the underlying structure or 
functional architecture of the model and the random fluctuations ( )w t .  
The driving fluctuations cause change in neural activity that can, in turn, 
be observed using the observer function h after addition of observation 
noise ( )e t . The associated functional connectivity (e.g., cross-covariance 
function) can be calculated easily from this forward or generative model 
(see Figure S2 in “Measures of Connectivity”) for any given parameters. 
Note that the effective connectivity matrix shown is actually a structural 
connectivity matrix of the famous macaque/CoCoMac. We use it here as a 
schematic for effective connectivity. 
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generalized inverse, then the Lyapunov exponents ( )N m  of this 
linear dynamical system will always be negative. In general, 
the Jacobian is not symmetrical (causal effects are asymmet
ric); the modes and eigenvalues take complex values. See [119] 
for a detailed treatment of the special case of symmetrical con
nectivity, in which the eigenmodes of functional and effective 
connectivity become the same. It is worth noting that these 
eigenmodes are also closely related to (group)  independent 
component analysis (ICA) except with a rotation based on 
higherorder statistics (for details, see [120]).

There are currently two schemes to invert models of 
the form (9). They differ in what data features they use for 
the parameter estimation. The first inverts data in the time 
domain, and the model is used to predict the time series per se.  

This is referred to as stochastic DCM [116]. The second 
approach makes predictions in the frequency domain and 
is based on fitting secondorder data features, such as cross 
spectra. This is referred to as spectral DCM [114], [121]. 
We briefly review both schemes and illustrate their clinical 
applications. For a schematic illustration of DCM of intrinsic 
dynamics, see Figure 4. Figure 5 presents a comparison of the 
two schemes.

Stochastic dynamic causal models
Stochastic DCM entails inverting a model of the form given 
by (10) in the time domain, which includes state noise. This 
requires estimation of not only the model parameters (and any 
hyperparameters that parameterize the precision of generalized 
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random fluctuations) but also the hidden states, which become 
random (probabilistic) variables. The unknown quantities to 
be estimated under a stochastic DCM are ( ), ,x t} i v= u" ,,  
where v  refers to any hyperparameters describing random 
fluctuations. In terms of temporal characteristics, the hidden 
states are timevariant, whereas the model parameters (and 
hyperparameters) are timeinvariant.

There are various variational schemes in the literature that 
can invert such models, for example, dynamic expectation 
maximization (DEM) [122] and generalized filtering (GF) 
[34]. There is a subtle but important distinction between DEM 
and GF. DEM calls on the mean field approximation described 
above, that is, it assumes ( )( ) ( ) ( ),x tq q q q} i v= u^ h  whereas 
GF, as the name suggests, is more general in that it does not 
make this assumption. However, both schemes assume a fixed
form Gaussian distribution for the  approximate conditional 

posterior densities (the Laplace approximation). GF considers 
all unknown quantities to be conditionally dependent variables, 
that is, , ,( ) ( )xq q} i v= u , and produces timedependent con
ditional densities for all unknown quantities. The timeinvari
ant parameters and hyperparameters are cast as timevariant 
with the prior constraint that their temporal variation is small. 
In brief, this online scheme assimilates log evidence at each 
time point in the form of variational free energy and provides 
timedependent conditional densities for all unknown quan
tities. This is in contrast to schemes such as DEM (or deter
ministic model inversion using variational Laplace) with mean 
field approximations, which assimilates all the data before 
computing the free energy.

“Effective Connectivity in Parkinson’s Disease” shows 
an exemplar data analysis reported in [123] that used sto
chastic DCM to quantify effective connectivity changes in 

Endogenous
Fluctuations

Endogenous
Fluctuations

Observed
Time Series

Complex Cross Spectra

Stochastic DCM Spectral DCM

y(
t)

w
(t

)

x(t ) = f (x(t ), u, θ)
.

x(t ) = f (x(t ), u, θ)
.

g(ω ) = K(ω )gw(ω )K(ω )† + ge(ω )

gw(ω , θ)
0.2

0.15
0.1

0.05

–0.05
–0.1

–0.15
50 100 150 200 250

0

1.5

0.5

–0.5

–1
–1.5

50 100 150 200 250

0

1

–0.1

0.1
0.2
0.3
0.4

0.5
0.6

0

0 50 10
0

15
0

20
0

25
0

30
0 0 50 10
0

15
0

20
0

25
0

30
0

Im
ag

in
ar

y

0.05

0.04

0.02

–0.02

–0.04

–0.06

0

log S

log f

1/f e

1/f β

fg w

Si

FIGure 5. A schematic illustrating the distinction between stochastic and spectral DCM. See the “Biophysical Modeling of Neuronal Dynamics” section for 
a detailed description of how these schemes are used to model intrinsic network dynamics.



28 IEEE SIgnal ProcESSIng MagazInE   |   May 2016   |

Given the marked clinical effect of subthalamic nucleus 
(STN) deep brain stimulation (DBS) in patients with 
Parkinson’s disease, Kahan et al. [123] used stochastic 
dynamic causal modeling (DCM) to estimate the coupling 
between key nodes of the basal ganglia network and to 
study whether this coupling was changed by DBS. In 
Figure S3(a), a network was specified based on human 
and animal literature, and priors were placed on the 
nature of the coupling (excitatory or inhibitory) based on 
the neurochemical systems known to mediate neuronal 
connections. The literature-based anatomical model of the 
motor cortico-striato-thalamic loop was further simplified 
by removing the pallidal nodes and summarizing polysyn-
aptic connections [thick arrows joining the putamen (Put), 
STN, and thalamus (Tha)]. Red arrows indicate excitatory 
coupling, and blue arrows indicate inhibitory coupling. 

Placing priors on the direction of coupling was enabled 
using the two-state DCM (left). In (b), it is shown that 
model inversion yielded coupling parameters on and off 
DBS, demonstrating significant DBS-related changes in 
extrinsic (between-node) coupling throughout the network. 
Paired t-tests revealed significant differences between 
extrinsic coupling on and off stimulation. Corticostriatal, 
direct pathway, and thalamocortical connections were 
potentiated by DBS, whereas STN afferents (lower panel) 
and efferents (upper panel) were attenuated. Note the dif-
ference in scale between the upper and lower panels. 
This is because the STN was modeled as a hidden node 
that was not measured with fMRI. Using a series of regres-
sion models, (c) shows the modulatory effects of DBS on 
connectivity to predict the clinical improvements seen in 
the patient cohort. (See [123] for more details.)
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Parkinson’s disease. Depleted of dopamine, the dynamics 
of the Parkinsonian brain impact on both action and resting 
motor activity. Deep brain stimulation (DBS) has become an 
established means of managing these symptoms, although 
its mechanisms of action remain unclear. Using stochastic 
DCM, Kahan et al. [123] modeled the effective connectiv
ity underlying low frequency BOLD fluctuations in the rest
ing Parkinsonian motor network. They were particularly 
interested in the distributed effects of DBS on corticosub
cortical connections. Specifically, they showed (see Figure 
S3 in “Effective Connectivity in Parkinson’s Disease”) that 
subthalamic nucleus (STN) DBS modulates all major com
ponents of the motor corticostriatothalamocortical loop, 
including the corticostriatal, thalamocorti
cal, direct, and indirect basal ganglia path
ways and the hyperdirect STN projections. 
The strength of effective STN afferents 
and efferents was reduced by stimulation, 
whereas corticostriatal, thalamocortical, 
and direct pathways were strengthened. 
Remarkably, regression analysis revealed 
that the hyperdirect, direct, and basal gan
glia afferents to the STN predicted clinical 
status and therapeutic response to DBS; however,  suppression 
of the sensitivity of the STN to its hyperdirect afferents by 
DBS may  subvert the clinical efficacy of DBS. These findings 
highlight the distributed effects of stimulation on the resting 
motor network and provide a framework for analyzing effec
tive connectivity in restingstate functional MRI with strong 
a priori hypotheses.

Spectral dynamic causal models
Although the stochastic models in (10) and their inversion in 
the time domain provide a useful means to estimate effec
tive connectivity, they also entail the estimation of hidden 
states. This poses a difficult inverse problem that is compu
tationally demanding, especially when the number of hidden 
states becomes large. To finesse this problem, a DCM based 
on a deterministic model that generates  predicted cross 
spectra was explored [114], [121]. This scheme  provides a 
constrained inversion of the stochastic model by param
eterizing the spectral density neuronal fluctuations. This 
parameterization also provides an opportunity to compare 
 parameters encoding neuronal fluctuations among groups. 
The  parameterization of endogenous fluctuations means 
that the states are no longer probabilistic; hence, the inver
sion scheme is significantly simpler, requiring estimation 
of only the parameters (and hyperparameters) of the model. 
The ensuing model inversion in the spectral domain is simi
lar in spirit to previous approaches described in [26], [98], 
and [124]. Put simply, although GF estimates timedepen
dent fluctuations in neuronal states producing observed data, 
spectral DCM simply estimates the timeinvariant param
eters of their cross spectra. Effectively, this is achieved by 
replacing the original time series with their secondorder 
statistics (i.e., cross spectra). This means that instead of 

 estimating timevarying hidden states, we are estimating 
their covariance. In turn, this means that we need to estimate 
the covariance of the random fluctuations using a scalefree 
(power law) form for the state noise (resp. observation noise) 
that can be motivated from previous work on neuronal activ
ity [125]–[127]:

 gw(~, i) = aw~
–bw

 ge(~, i) = ae~
–be . (11)

Here, ( ) ( ) ( )g X Xx ~ ~ ~= @  represents the complex cross spec
tra, where ( )X ~  is the Fourier transform of ( )x t , , 1a b i" ,   
are the parameters controlling the amplitudes and exponents 

of the spectral density of the neural fluctua
tions, and f2~ r=  is the angular frequen
cy. This models neuronal noise with generic 
/f1 c  spectra that characterize fluctuations 

in systems that are at nonequilibrium steady 
state. A linear scaling regime of the spectral 
density in double logarithmic coordinates—
implicit in (11)—is not by itself indicative 
of a scalefree critical process unless c  is 
less than 1.5 Hz (and the regime scales over 

several orders of magnitude). For the human EEG, this is gen
erally not the case: above 10 Hz,  c = 2.5, and above 70 Hz, 
c  is usually greater than 3.5, which is consistent with a Pois
son process (see [128] and [129]). However, at low frequencies 
(less than 1.5 Hz), the slope is more shallow, and it is likely 
that the amplitude or power envelopes of faster frequencies are 
scalefree [130, 131] or another heavytailed distribution [132]. 
Using the model parameters , , ,A C4i a b" ,, one can simply 
generate the expected cross spectra as follows:

 ( ) ( ) ( ) ( )y w et t t t7l= +  

 ( )tl  expg t f  x x2 2= ^ h

 gy(~, i) = |K(~)|2 gw(~, i) + ge(~, i), (12)

where )(K ~  is the Fourier transform of the system’s (first
order) Volterra kernels ( )tl , which are a function of the Jaco
bian or effective connectivity (see Figure S2). The unknown 
quantities , ,} { i v= " , of this deterministic model can 
now be estimated using standard variational Laplace [133]. 
The resulting inversion provides the free energy bound on the 
logevidence  ( ( )| )glog p my ~  and approximate conditional 
 densities q(}) . p(}| g(~), m). Here ( )gy ~  represents the pre
dicted cross spectra that can be estimated, for example, using 
an autoregressive model.

An example from aging
Finally, in “Aging and Spectral DCM,” we show an example 
from recent work on aging [134] that used spectral DCM. 
Wellbeing across the lifespan depends on the preservation 
of cognitive function. It was hypothesized that successful 
cognitive aging is determined by the connectivity within and 
between largescale brain networks at rest. Spectral DCM 

Spectral and stochastic 
DCMs furnish estimates  
of the effective 
connectivity that  
underlies intrinsic  
brain networks.
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In Figure S4(a), spatial distribution of three independent 
components using group independent component analy-
sis (ICA) (n = 602) are identified as the default-mode net-
work (DMN) (in blue), the dorsal attention network (DAN) 
(in red), the salience network (SN) (in yellow), and the 
peaks of their corresponding nodes (green circles). 
Temporal correlation is between the first eigenvariates of 
the ensuing time series across all nodes and networks. 
Coefficients for how well effective connectivity (white), 
neuronal (green), and hemodynamic (red) parameters 
predict age are shown in (b), and dynamic causal model-
ing parameters with bars (95% confidence intervals) that 
exclude zero are considered as significant predictors. A 
between-network canonical variate analysis is shown in 
(c). More specifically, shown is a heliograph of variate 

loadings for the first canonical variate, where the relative 
sizes of correlations are indicated by the relative length 
of the bars (the dark is positive, and the white is 
 negative). These reflect the statistical relationship 
between  variables of effective connectivity (connectivity  
profile) and cognitive performance (cognitive profile)  
(r = 0.440, p < 0.001). Variables with low contribution 
(r  < 0.3) are shown as bars with a dashed outline.  
Half-maximum strength of a correlation is indicated by 
dashed rings (outer, r = +0.5; inner, r = –0.5). The corre-
sponding bivariate canonical correlations for three age 
groups are shown in (d). The relationships between con-
nectivity and cognitive profiles are more pronounced for 
older patients, suggesting that performance in older 
adults reflects a preserved connectivity.

Aging and Spectral DCM

FIGure S4. The summary of between-network connectivity changes over the adult lifespan.
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was used to explain the spectral characteristics of restingstate 
fMRI data from 602 healthy adults in a cohort across ages 
18–88 (www.camcan.org). The location of the key cortical 
regions in each network was identified by spatial ICA using 
group ICA [120] to extract 20 lowdimensional components. 
The three wellestablished functional networks, the salience 
network (SN), dorsal attention network (DAN), and default
mode network (DMN), were then identified by spatial match
ing to preexisting templates [135]. Effective  connectivity was 
assessed within and between these three 
key  largescale networks although, for 
brevity, we have included more interesting 
results only for the betweennetwork con
nectivity in this review. In brief, a twostep 
process is used in which ICA identifies 
linearly coherent networks, and the (poten
tially nonlinear) relationship among these 
networks is then tested within a causal 
modeling framework using spectral DCM. This approach has 
been used several times in both taskbased and restingstate 
fMRI data [136]–[138].

Using multiple linear regression, it was found that about 
30% of age variance can be predicted (r = 0.544, p < 0.001) 
by 1) increased inhibitory selfconnections in SN and DMN, 
2) decreased effective connectivity from DAN to SN, and 
3) increased hemodynamic decay times for all networks 
[Figure S4(b)]. Subsequently, a classical multivariate test 
(canonical variate analysis) was used to determine to what 
degree the DCM parameters predict cognitive performance, 
shown in Figure S4(c). For betweennetwork analysis, the 
corresponding canonical vector suggested that high perfor
mance across a range of cognitive tasks [high scores of gen
eral intelligence (Cattell), face processing (Benton Faces), 
memory (story recall), multitasking (Hotel), and response 
consistency (inverse of response variability on simple motor 
task)] was associated with less selfinhibition of the net
works and a smaller influence of the DMN on SN (r = 0.447, 
p < 0.001). In other words, about 20% of the variance in 
performance—across a range of cognitive tasks studied—
could be predicted from changes in effective connectivity 
between networks. To further investigate whether the rela
tionship between cognitive performance and connectivity 
was agedependent, moderation analysis was used. It was 
found that the interaction between age and connectivity 
values (age × connectivity profile) predicted a significant 
proportion of variance in cognitive performance (T(398) = 
3.115, p (onetailed) < 0.001). The direction of the interac
tion was such that  increasing age strengthened the relation
ship between  cognitive and  connectivity profiles. This is 
shown in Figure S4(d), where the  relationship between cog
nitive performance and  connectivity profile becomes stron
ger for older age groups. This is an interesting study because 
it used spectral DCM to  dissociate neuronal from vascular 
components of the fMRI signal to find agedependent and 
behaviorally relevant differences in restingstate effective 
connectivity between largescale brain networks. Taken 

together, the results suggest that  maintaining a healthy 
 restingstate connectivity becomes increasingly important 
for older adults to maintain high levels of  domaingeneral 
cognitive function and may play a critical role in the mecha
nisms of healthy cognitive aging.

Summary
Both spectral and stochastic DCMs furnish estimates of the 
effective connectivity that underlies intrinsic brain networks. 

These estimates are based on BOLD data 
acquired at rest using different inversion 
schemes. We suppose that these resting
state networks emerge from the dynamic 
instabilities and critical slowing near 
transcritical bifurcations. In this setting, 
neuronal activity is modeled with random 
differential equations, which can be esti
mated using stochastic inversion schemes 

(such as GF in stochastic DCM) or by deterministic schemes 
modeling observed functional connectivity (specifically, the 
crossspectral densities modeled by spectral DCM).

Discussion
The limitations and challenges of DCM and the implicit 
scoring of large numbers of models have been addressed 
in a number of critical reviews (e.g., [139] and [140]). Their 
key conclusions highlight several issues. First, although the 
modeling assumptions underlying DCM are motivated by 
neuroanatomical and neurophysiological constraints, their 
plausibility is difficult to fully establish. For example, in 
DCM for fMRI, physiological details of the neurovascular 
coupling are potentially important. Many DCMs neglect the 
potential influence of inhibitory activity on the hemodynamic 
response and call on a simplistic account of the metabolic cas
cade that relates synaptic activity and neuronal metabolism to 
the vasodilatation. In principle, these are issues that can be 
resolved using Bayesian model comparison. In other words, if 
a more complex and complete model is supported by the data, 
one can always optimize the DCM. Examples of this include 
recent trends toward more detailed physiological modeling. 
For example, several extensions are proposed in [141], such as 
an adaptive twostate neuronal model that accounts for a wide 
range of neuronal time courses during stimulation and post
stimulus deactivation, a neurovascular coupling model that 
links neuronal activity to blood flow in a strictly feedforward 
fashion, and a balloon model that can account for a vascular 
uncoupling between blood flow and blood volume due to vis
coelastic properties of venous blood vessels.

There are also questions about the robustness of the statisti
cal (approximate Bayesian) inference techniques employed in 
DCM. For example, it has been argued that 1) the number of 
parameters and the complexity of the models preclude robust 
parameter estimation [140], [142]; 2) Bayesian model compari
son cannot compare DCMs in the sense that it cannot falsify 
them; and 3) selecting a model based on the model evidence 
does not ensure that it will generalize. All of these concerns 

resting-state fMrI studies 
show that intrinsic brain 
activity is self-organizing 
and highly structured.
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stem from frequentist thinking and are dissolved within a 
Bayesian framework (see [139] for a detailed discussion). 
There are also several wellfounded technical concerns about 
the variational Bayes (VB) schemes employed in DCM. For 
example, the objective function based on the freeenergy func
tional is prone to local maxima that can result in inconsistent 
 parameter estimations and model comparisons (e.g., across tri
als or subjects). There are several experimental studies (e.g.,  
[143]–[147]) that have addressed the reproducibility of DCM 
and provide reassuring experimental validation. There is an 
issue of overconfidence usually associated with VB schemes 
due to the potentially biased inference that results from mean 
field and Laplace approximations to the posterior density. This 
issue has been addressed by simulation studies that compare 
the results of VB with standard (e.g., Gibb’s) sampling meth
ods. The failures of approximate Bayesian inference are usu
ally mitigated by formulating the inversion problem in a way 
that eschews brittle nonlinearities.

Given these issues, one obvious alternative is to use either 
exact inference schemes, such as Markov chain Monte Carlo 
(MCMC) or nonparametric methods based on Gaussian 
processes. Both have recently been explored for inverting 
Bayesian hierarchical models. For example, Gaussian process 
optimization was used for model inversion in [148], several 
gradientfree MCMC schemes (e.g., for random walkbased 
Hasting’s sampling, adaptive MCMC sampling, and popu
lationbased MCMC sampling) were explored in [149], and 
more robust gradientbased MCMC schemes (e.g., for Ham
iltonian and Langevin MCMC sampling) were extensively 
studied in [150]. However, these alternative and promising 
inference methods are still in an early phase of development 
and validation phase and will require exhaustive experimen
tal studies to establish validity.

Clearly, most of these issues transcend DCM per se and 
speak to the challenges facing any modeling initiative that has 
to contend with big data and a large model or hypothesis space. 
These challenges have focused recent research on contextual
izing the inversion of models of single subjects using (empiri
cal or hierarchical) Bayesian models that distinguish between 
within and betweensubject effects on one hand and the scor
ing of large model spaces with techniques such as Bayesian 
model reduction on the other. This is an active research field 
with developments nearly every month.

In conclusion, we have used several distinctions to review 
the history and modeling of macroscopic brain connectivity. 
We started with the distinction between functional segregation 
and integration. In functional integration, we considered the 
key distinction between functional and effective connectivity 
and their relationship to underlying models of distributed pro
cessing. In effective connectivity, we looked at structural and 
dynamic causal modeling while highlighting recent advances 
in the DCM of restingstate fMRI data.

We close with a few words on recent largescale proj
ects in neurosciences, for example, the American BRAIN 
 Initiative and the European Human Brain Project. These 
initiatives reflect an increasing appreciation of the impor

tance of neuroscience and the challenges of understanding 
how brains work. Furthermore, they represent initiatives that 
exploit  remarkable advances in computer science and neu
roimaging at many  different scales (from the molecular to 
multisubject) and the modeling (and mining) of the resulting 
data. The experience of the systems neuroscience community, 
with the big data obtained from neuroimaging, is reflected in 
this review. This experience highlights the importance of for
mal models of how data are generated and the computational 
schemes used to evaluate and invert these models. We are just 
embarking on a difficult journey to uncover the governing 
principles of how brains work and their functional (compu
tational) architectures. Perhaps it is fitting to end with an 
encouraging quote from Abdus Salam (recipient of the Nobel 
Prize in Physics 1979): “Nature is not economical of struc
tures—only of principles.”
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